Abstract
A comprehensive study on hot-carrier degradation (HCD) mechanisms in 14 nm silicon-on-insulator (SOI) n-channel FinFETs is presented. The impact of high-frequency AC stress bias on self-heating (SH) enhanced hot-carrier injection in oxide bulk traps is investigated and compared with the measurement results using the conventional DC stress bias. The influence of SH on electrical parameter degradation due to hot-carriers is shown as an important metric for accurate device reliability analysis. The relative contribution of bulk and interface traps is determined to identify the dominant mechanism responsible for HCD for different device geometries. The device behavior is thoroughly studied under hot-carrier DC and AC stresses for different device design parameters, such as effective oxide thickness, number of fins, and channel length. Based on measured data, we have proposed an empirical model for reliability degradation, which takes into account some of the key device design parameters and stress bias frequency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.