Abstract

Maintenance usually plays a key role in controlling a multi-component production system within normal operations. Furthermore, the failure of components in the production system will also cause large economic losses for users due to the shutdown. Meanwhile, manufacturers of the production system will be confronted with the challenges of the warranty cost. Therefore, it is of great significance to optimize the maintenance strategy to reduce the downtime and warranty cost of the system. Opportunistic maintenance (OM) is a quite important solution to reduce the maintenance cost and improve the system performance. This paper studies the OM problem for multi-component systems with economic dependence under base warranty (BW). The irregular imperfect preventive maintenance (PM) is performed to reduce the failure rate of components at a certain PM reliability threshold. Moreover, the OM optimization model is developed to minimize the maintenance cost under the optimal OM reliability threshold of each component. A simulated annealing (SA) algorithm is proposed to determine the optimal maintenance cost of the system and the optimal OM threshold under BW. Finally, a numerical example of a belt conveyor drive device in a port is introduced to demonstrate the feasibility and advantages of the proposed model in maintenance cost optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.