Abstract

In this paper, the linear parameter varying (LPV) reliable non-fragile control for the hypersonic vehicle (HV) is studied in case of disturbance and controller gain variations. Due to the dramatic and complex change of the HV longitudinal dynamics, a polytopic LPV model is constructed for the HV system stability analysis and controller design in a large flight envelope. Then, a disturbance observer (DOB)-based non-fragile controller for HV system with disturbance and unknown controller uncertainty is designed to guarantee the closed-loop stability and control performance under an adequate level of reliability, which is formed with two parts. One part is a DOB to compensate the uncertain dynamics and disturbance. The other is a robust non-fragile controller, which is designed based on a novel robust reliability method to deal with controller uncertainties, and obtained by carrying out reliability-based linear matrix inequality optimization. The presented controller for HV can provide the robustness as well as an excellent performance under the condition that the prescribed reliability degree is satisfied. Finally, numerical simulation for an HV demonstrates the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call