Abstract

Structural applications of carbon fiber-reinforced polymer (FRP) composites in civil infrastructure rehabilitation projects are receiving increasing interest due primarily to their high strength-weight ratio, resistance to aggressive environments, and other favorable properties that can be used to advantage in civil projects. Structural design and evaluation in civil engineering applications are distinguished by their reliance on codes of practice and on advanced analysis in lieu of component testing. The current lack of supporting codes, standards, and other regulatory guidance is a barrier to the implementation of high-performance FRP materials in civil construction. Experience over the past three decades in developing probability-based limit state design criteria for common construction materials points the way forward for making similar advances in guidelines for design and evaluation of structural components and systems that employ FRP composite materials. This paper summarizes some of the available tools and supporting databases that can be used to develop reliability-based guidelines for design and evaluation of FRP composites in civil construction and illustrates their application with several practical examples involving strengthening reinforced concrete flexural members.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.