Abstract

Environmental climate change has encouraged countries across the world to develop policies aimed to the reduction in energy consumption and greenhouse gas emissions. The introduction of Zero-Emission Vehicles based on electrical powertrains, could reduce the emission of environmental pollutants, the noise levels and could increase the liveability of urban areas. Although in recent years research on batteries has brought several benefits to electric vehicle performance, key barriers to their adoption are still high cost, reduced autonomy, long charging times and the leak of a suitable network of charging stations. Substantial improvements in electric vehicles performance are expected with the development of new Li-ion batteries, thanks to some notable advantages over other types of batteries, such as: high energy density, high power density, long cycle life and long calendar life. This paper is aimed to present a reliability assessment procedure based on an ageing model able to estimate from datasheet information the lifetime of Lithium-ion batteries for electric vehicles, the residual capacity and reliability margins under different driving cycles, taking also into account the battery calendar ageing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.