Abstract

AbstractAdjustable speed drives (ASDs) are widely used in industry for controlling electric motors in applications such as rolling mills, compressors, fans, and pumps. Condition monitoring of ASD-fed induction machines is very critical for preventing failures. Motor current signature analysis offers a non-invasive approach to assess motor condition. Application of conventional convolutional neural networks provides good results in detecting and classifying fault types for utility line-fed motors, but the accuracy drops considerably in the case of ASD-fed motors. This work introduces the use of self-organized operational neural networks to enhance the accuracy of detecting and classifying bearing faults in ASD-fed induction machines. Our approach leverages the nonlinear neurons and self-organizing capabilities of self-organized operational neural networks to better handle the non-stationary nature of ASD operations, providing more reliable fault detection and classification with minimal preprocessing and low complexity, using raw motor current data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.