Abstract

The high penetration of Renewable Energy Sources (RES) makes the power system unreliable due to its uncertain nature and to deal with this uncertainties installation of an Energy Storage System (ESS) is suggested. In this paper, the quantifying impact of ESS capacity on power system network reliability and relieving the congestion is analyzed. The proposed reliability assessment and congestion relief problem is formulated by considering generation cost and demand interruption cost for N-1 contingency criteria. The proposed algorithm manages the optimal charging and discharging of ESS to mitigate the uncertainties associated with RES and relieving the congestion. The impact of ESS capacity on reliability indices Expected Energy not Supplied (EENS) and Expected interruption Cost (ECOST) for Generating Companies (GENCOs), Transmission Companies (TRANSCOs), customers, and entire power system are calculated. The appropriate size of ESS is selected by the trade-off between investment cost of ESS and percentage change in EENS and ECOST value for the entire power system, GENCOs, TRANSCOs, and customers. The effectiveness of the proposed approach is tested on the modified IEEE RTS 24 bus system. The problem is modeled in the Generic Algebraic Solver (GAMS) environment and solved using CONOPT as an NLP solver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call