Abstract

Summary The prediction of dynamic elastic constants of reservoir rocks is one of the most important aspects of petroleum engineering. In recent years, several studies have been performed for this purpose. Because of uncertainty and variability in natural materials, deterministic prediction of rock properties in the reservoir is not reasonable. The purpose of this study is to evaluate uncertainty in dynamic-elastic-constant prediction for reservoir rock. Dipole-shear-sonic-image (DSI) log data from one of the Saudi Arabian reservoirs are used to evaluate uncertainty in dynamic-elastic-property prediction. For this purpose, a multiple linear regression (MLR) is carried out to present an empirical equation for shear-wave (S-wave) velocity prediction. Then, probabilistic analysis using Monte Carlo simulation (MCS) is performed to evaluate the uncertainty and reliability in prediction of dynamic elastic constants (Young's modulus and Poisson's ratio). On the basis of the analysis, uncertainty and variability of rock elastic constants are considered, and the value of Young's modulus and Poisson's ratio in a special interval from the reservoir are determined with a certain probability. Finally, the impact of log-data parameters on the value of rock elastic constants in the reservoir interval is assessed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.