Abstract

A general methodology is presented for time-dependent reliability and random vibrations of nonlinear vibratory systems with random parameters excited by non-Gaussian loads. The approach is based on polynomial chaos expansion (PCE), Karhunen–Loeve (KL) expansion, and quasi Monte Carlo (QMC). The latter is used to estimate multidimensional integrals efficiently. The input random processes are first characterized using their first four moments (mean, standard deviation, skewness, and kurtosis coefficients) and a correlation structure in order to generate sample realizations (trajectories). Characterization means the development of a stochastic metamodel. The input random variables and processes are expressed in terms of independent standard normal variables in N dimensions. The N-dimensional input space is space filled with M points. The system differential equations of motion (EOM) are time integrated for each of the M points, and QMC estimates the four moments and correlation structure of the output efficiently. The proposed PCE–KL–QMC approach is then used to characterize the output process. Finally, classical MC simulation estimates the time-dependent probability of failure using the developed stochastic metamodel of the output process. The proposed methodology is demonstrated with a Duffing oscillator example under non-Gaussian load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.