Abstract

A general methodology is presented for time-dependent reliability and random vibrations of nonlinear vibratory systems with random parameters excited by non-Gaussian loads. The approach is based on Polynomial Chaos Expansion (PCE), Karhunen-Loeve (KL) expansion and Quasi Monte Carlo (QMC). The latter is used to estimate multi-dimensional integrals efficiently. The input random processes are first characterized using their first four moments (mean, standard deviation, skewness and kurtosis coefficients) and a correlation structure in order to generate sample realizations (trajectories). Characterization means the development of a stochastic metamodel. The input random variables and processes are expressed in terms of independent standard normal variables in N dimensions. The N-dimensional input space is space filled with M points. The system differential equations of motion are time integrated for each of the M points and QMC estimates the four moments and correlation structure of the output efficiently. The proposed PCE-KL-QMC approach is then used to characterize the output process. Finally, classical MC simulation estimates the time-dependent probability of failure using the developed stochastic metamodel of the output process. The proposed methodology is demonstrated with a Duffing oscillator example under non-Gaussian load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.