Abstract

The rapid development of CMOS and non-CMOS nanotechnologies has opened up new possibilities and introduced new challenges for circuit design. One of the main challenges is in designing reliable circuits from defective nanoscale devices. Hence, there is a need to develop methodologies to accurately evaluate circuit reliability. In recent years, a number of reliability evaluation methodologies based on probabilistic model checking, probabilistic transfer matrices, probabilistic gate models, etc., have been proposed. Scalability has been a concern in the applicability of these methodologies to the reliability analysis of large circuits. In this paper, we develop a general, scalable technique for these reliability evaluation methodologies. Specifically, an algorithm is developed for the model checking-based methodology and implemented in a tool called Scalable, Extensible Tool for Reliability Analysis (SETRA). SETRA integrates the scalable model checking-based algorithm into the conventional computer-aided design circuit design flow. The paper also discusses ways to modify the scalable algorithm for the other reliability estimation methodologies and plug them into SETRA's extensible framework. Our preliminary experiments show how SETRA can be used effectively to evaluate and compare the robustness of different circuit designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.