Abstract
In reliability analysis, different stress techniques are used to know the lifetime and performance of electrical devices via accelerated life testing. One of these stress technique is the step stress, which combines the traditional reliability testing and over-stress testing; with this method, it is easy to obtain the failure time in a short time. Nonetheless, the analysis of step-stress data can be difficult, and the specialist has usually have to trust on shortcuts or estimations to obtain reliability information from step-stress data. In this paper, a model based on Weibull distribution, inverse power law, cumulative damage model and step-tress technique is proposed to analyze the behavior of electronic devices under a voltage step-stress scenario. The parameters of the model were analyzed via a maximum likelihood. A case of study is based on DC motors is presented in this paper. The results obtained in this paper helped to design department in order to improve the lifetime and performance of the device under analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.