Abstract

Due to the advance of speech technologies and their increasing usage in various applications, automatic recognition of emotions in speech represents one of the emerging fields in human-computer interaction. This paper deals with several topics related to automatic emotional speech recognition, most notably with the improvement of recognition accuracy by lowering the dimensionality of the feature space and evaluation of the relevance of particular feature types. The research is focused on the classification of emotional speech into five basic emotional classes (anger, joy, fear, sadness and neutral speech) using a recorded corpus of emotional speech in Serbian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.