Abstract

We study the competition and correspondence between the classical and quantum routes to intramolecular vibrational energy redistribution (IVR) in a three degrees of freedom model effective Hamiltonian. Specifically, we focus on the classical and the quantum dynamics near the resonance junctions on the Arnold web that are formed by an intersection of independent resonances. The regime of interest models the IVR dynamics from highly excited initial states near dissociation thresholds of molecular systems wherein both classical and purely quantum, involving dynamical tunneling, routes to IVR coexist. In the vicinity of a resonance junction, classical chaos is inevitably present, and hence one expects the quantum IVR pathways to have a strong classical component as well. We show that with increasing resonant coupling strengths the classical component of IVR leads to a transition from coherent dynamical tunneling to incoherent dynamical tunneling. Furthermore, we establish that the quantum IVR dynamics can be predicted based on the structures on the classical Arnold web. In addition, we investigate the nature of the highly excited eigenstates to identify the quantum signatures of the multiplicity-2 junctions. For the parameter regimes studies herein, by projecting the eigenstates onto the Arnold web, we find that eigenstates in the vicinity of the junctions are primarily delocalized due to dynamical tunneling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.