Abstract
The limited use of palladium‐103 and ‐109 radionuclides for molecular radiotherapy is surely due to the lack of appropriate ligands capable of fulfilling all criteria required for application in nuclear medicine. Furthermore, the thermodynamic properties of these complexes in solution remain difficult to establish. The challenge is compounded when considering that radiolabeling of compounds for translation to clinical trials requires fast complexation. Thus, the coordination of Pd(II) and 103/109Pd‐nuclides is a huge challenge in terms of molecular design and physicochemical characterization. Herein, we report a comprehensive study highlighting TE1PA, a monopicolinate cyclam – already established in nuclear imaging with 64Cu‐PET (positron emission tomography) imaging tracers – as a highly relevant chelator for natural Pd and subsequently 109Pd‐nuclide. The structural, thermodynamic, kinetic and radiolabeling studies of Pd(II) with TE1PA, as well as the comparison of this complex with three structurally related derivatives, support palladium‐TE1PA radiopharmaceuticals as leading candidates for targeted nuclear medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.