Abstract

The control of line-edge roughness (LER) of features printed in photoresist poses significant challenges to next-generation lithography techniques such as extreme-ultraviolet (EUV) lithography. Achieving adequately low LER levels requires accurate resist characterization as well as the ability to separate resist effects from other potential contributors to LER. One potentially significant contributor to LER arises from roughness on the mask coupling to speckle in the aerial image and consequently to LER in the printed image. Here I numerically study mask surface roughness and phase roughness to resist LER coupling both as a function of illumination coherence and defocus. Moreover, the potential consequences of this mask effect for recent EUV lithography experiments is studied through direct comparison with experimental through-focus printing data collected at a variety of coherence settings. Finally, the effect that mask roughness will play in upcoming 0.3-numerical-aperture resist testing is considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.