Abstract

Estuaries and coasts are located at the land-sea interface, where sediment liquefaction due to strong wave action results in significant material exchange at the sediment-seawater system. Polycyclic aromatic hydrocarbons (PAHs), as organic pollutants, are distributed across various media. Herein, the impact of wave was studied on the release of PAHs through indoor microcosmic experiments combined with a level IV fugacity model. Comparison revealed that the release amount and rate of PAHs during static consolidation stage were minimal, whereas wave action substantially enhanced the release. Particularly the sediments in a liquefied state, the PAHs release in Stage III was 1.55–1.86 times that in Stage II, reaching 84.73 μg/L. The loss of soil strength and strong hydrodynamic effects resulted in a substantial release of PAHs into seawater along with suspended solids. Due to volatility of 2-ring PAHs and difficult desorption of 6-ring PAHs, 3–5-ring PAHs are the main contributors to releases into seawater. The model results also indicated that the three PAHs had different fates in the sediment-seawater system, with sediment serving as an important "reservoir" for benzo[a]pyrene entering seawater, while functioning as both a "sink" and a "source" for pyrene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.