Abstract
During ischemia, myocardial adenosine triphosphate is degraded to adenosine, inosine and hypoxanthine. These nucleosides are released into coronary venous blood and may provide an index of ischemia; adenosine may also participate in the autoregulation of coronary flow. In dogs, the temporal relations between reactive hyperemic flow and nucleoside concentrations in regional venous blood were correlated after brief occlusions of a segmental coronary artery. Reactive hyperemia and adenosine release peaked together in 10 seconds, persisted for 10 to 30 seconds and then decreased in a pattern consistent with the hypothesis that they are related. During initial reflow after 45 seconds of ischemia, mean concentrations of adenosine, inosine and hypoxanthine increased, respectively, to 52, 67 and 114 nmol/100 ml plasma; after 5 minutes of ischemia, the respective levels increased to 58, 1,570 and 1,134 nmol and fell quickly.In nine patients there was a similar release of nucleosides into coronary sinus blood during reperfusion after 59 to 80 minutes of ischemic arrest during cardiac surgery. With initial reflow, adenosine, inosine and hypoxanthine levels reached 65, 655 and 917 nmol/100 ml of blood, respectively. Inosine and hypoxanthine concentrations remained high for 5 to 10 minutes after cardiac beating resumed, often when production of lactate had decreased.The results indicate that postischemic release of nucleosides reaches significant levels in man as well as animals, is parallel with the duration of ischemia, is temporary and may be a useful supplement to measurement of lactate as an index of prior myocardial ischemia.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have