Abstract
Eutrophication remediation is an ongoing priority for protecting aquatic ecosystems, especially in plateau lakes with fragile ecologies and special tectonic environments. However, current strategies to control the phosphorus (P) and nitrogen (N) levels in eutrophication sites have been mainly guided by laboratory experiments or literature reviews without in-field analyses of the geochemical processes associated with the hydrological and eutrophic characteristics of lakes. This study analyzed the water quality parameters of 50 sites at Lake Jian in May 2019, a moderate eutrophication shallow plateau lake, based on dissolved/sedimentary nitrogen, phosphorous and organic matter, grain size, C/N ratios and stable isotope ratios of δ13C or δ15N in sediments. The results showed that the average total nitrogen (TN) and total phosphorus (TP) concentrations in the lake water were 0.57 mg/L and 0.071 mg/L, respectively. The TN and TP contents of surface sediment ranged from 2.15 to 9.55 g/kg and 0.76 to 1.74 g/kg, respectively. Stable isotope and grain source analysis indicated that N in sediments mainly existed in organic matter form and P mainly occurred as inorganic mineral adsorption. Endogenous pollution contributed to >20% of TN. Furthermore, our findings showed that phosphorus was the nutrient that limited eutrophication at Lake Jian, unlike other eutrophic shallow lakes. In contrast, the nutrient levels in the sediment and input streams belonged entirely to the N-limitation state. The distinctness in release intensity of N and P could modify the N/P limitation in the lake, which affects algae growth and nutrient control. These results demonstrated that reducing exogenous nutrients might not effectively mitigate lake eutrophication due to their endogenous recycling; thus, detailed nutrient monitoring is needed to preserve aquatic ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.