Abstract
To investigate the effect of selective retina therapy (SRT) on the release of AMD-relevant cell mediators, such as matrix metalloproteinases (MMPs), VEGF, and pigment epithelium derived factor (PEDF) using different laser spot sizes and densities. Porcine RPE-choroid explants were treated with a pulsed 532 nm Nd:YAG laser using (1) large spot sizes, (2) small spot sizes with a high-density (hd) treatment, and (3) small spot sizes with a low-density (ld) treatment. Explants were cultivated in modified Ussing chambers. RPE regeneration and RPE cell death were investigated by calcein-AM staining and immunofluorescence. The MMP release was examined via zymography and immunofluorescence. VEGF and PEDF secretion was analyzed by ELISA. During pigment epithelium regeneration (PER), mitosis and RPE cell migration were observed. Four days after SRT (large spot size) the content of active MMP2 increased significantly (P < 0.01). Hd treatment with small spot sizes resulted also in an increase of active MMP2 (P < 0.05). In immunofluorescence explants showed a localized expression of MMP2 within the healing lesions after irradiation. The PEDF level increased significantly (P = 0.01) after SRT with large spot sizes. VEGF secretion decreased significantly (P < 0.05) following SRT with large spot sizes and with hd treatment of small spot sizes. SRT induces a cytokine profile, which may improve the flux across Bruch's membrane, slows down progression of early AMD by RPE regeneration, and inhibits the formation of choroidal neovascularization. The cytokine release depends on the size and density of applied laser spots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.