Abstract

Spin-transfer torque magnetic random-access memory (STT-MRAM) is considered as a premiere candidate for replacing conventional six-transistors static random-access memory (6T-SRAM) in processor caches. This paper explores STT-MRAMs based on double-barrier magnetic tunnel junction with two reference layers (DMTJ), while operating at cryogenic temperatures (77 K). To deal with large dynamc energy and long latency of write operation, we suggest to significantly relax the non-volatility requirement of DMTJ devices at room temperature by reducing the cross-section area, while maintaining the typical 10-years retention time at the target operating temperature. This leads the cryogenic DMTJ-based STT-MRAM to be more energy-efficient than its 6T-SRAM counterpart under both read and write operations, while exhibiting smaller area footprint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.