Abstract
In this chapter, we explore the extent to which we can escape the dictatorship result if we relax some of Arrow’s axioms. If we relax independence of irrelevant alternatives, then we get the Borda Count which is a well-defined social welfare function satisfying unrestricted domain and weak Pareto. This we have already discussed is Example 4.5 of Chapter 4. In Section 5.2, we relax weak Pareto and replace it by a weaker axiom of non-imposition and then we get the result due to Wilson (1972) that stipulates that a social welfare function satisfying unrestricted domain, independence of irrelevant alternatives, and non-imposition axioms must be null or dictatorial or inverse-dictatorial, given that the number of alternatives is not less than three. Both inverse-dictatorial and null social welfare functions are quite uninteresting. Inverse-dictatorship requires that there exists an agent i whose strict preference over every pair of alternatives is reversed for the society under all profiles in the domain. Like inverse-dictatorial social welfare function, the null social welfare function is also uninteresting since the society is always indifferent across all alternatives for all possible profiles in the domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.