Abstract
Compared to binary low-density parity-check (LDPC) codes, nonbinary (NB) LDPC codes can achieve higher coding gain when the codeword length is moderate, but at the cost of higher decoding complexity. One major bottleneck of NB-LDPC decoding is the complicated check node processing. In this paper, a novel relaxed check node processing scheme is proposed for the min-max NB-LDPC decoding algorithm. Each finite field element of GF(2p) can be uniquely represented by a linear combination of p independent field elements. Making use of this property, an innovative method is developed in this paper to first find a set of the p most reliable variable-to-check messages with independent field elements, called the minimum basis. Then, the check-to-variable messages are efficiently computed from the minimum basis. With very small performance loss, the complexity of the check node processing can be substantially reduced using the proposed scheme. In addition, efficient VLSI architectures are developed to implement the proposed check node processing and the overall NB-LDPC decoder. Compared to the most efficient prior design, the proposed decoder for a (837, 726) NB-LDPC code over GF(25) can achieve 52% higher efficiency in terms of throughput-over-area ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.