Abstract

The electron paramagnetic resonance (EPR) is a well known tool to investigate the magnetic relaxation phenomena in the magnetic particles. For the present investigation, temperature variant EPR has been performed in order to study the relaxation mechanism in zinc ferrite nanoparticles. The magnetic nanoparticles were synthesized by using the nitrates of zinc and iron, and citric acid. The particle size of the samples were measured by the X-ray diffraction and Transmission Electron Microscopy. A more precise, Williamson–Hall (W–H) approach was used for the determination of the particle size as well as the strain in nanoparticles. The kinematics of magnetic moment has been studied with the help of temperature dependent EPR spectroscopy. Relaxation time calculations and temperature dependence of linewidth show the dominance of spin-lattice relaxation in these systems. Both nanoparticle systems show the presence of direct and Raman process in the relaxation mechanism and completely rule out the presence of Orbach process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.