Abstract

We compute for an archetypical glass-forming system the excess of particle mobility distributions over the corresponding distribution of dynamic propensity, a quantity that measures the tendency of the particles to be mobile and reflects the local structural constraints. This enables us to demonstrate that, on supercooling, the dynamical trajectory in search for a relaxation event must deal with an increasing confinement of relaxation pathways. This "entropic funnel" of relaxation pathways built upon a restricted set of mobile particles is also made evident from the decay and further collapse of the associated Shannon entropy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call