Abstract
In this paper, we study the face attribute learning problem by considering the identity information and attribute relationships simultaneously. In particular, we first introduce a Partially Shared Multi-task Convolutional Neural Network (PS-MCNN), in which four Task Specific Networks (TSNets) and one Shared Network (SNet) are connected by Partially Shared (PS) structures to learn better shared and task specific representations. To utilize identity information to further boost the performance, we introduce a local learning constraint which minimizes the difference between the representations of each sample and its local geometric neighbours with the same identity. Consequently, we present a local constraint regularized multitask network, called Partially Shared Multi-task Convolutional Neural Network with Local Constraint (PS-MCNN-LC), where PS structure and local constraint are integrated together to help the framework learn better attribute representations. The experimental results on CelebA and LFWA demonstrate the promise of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.