Abstract

Polarized negative muons were used to study relaxation mechanisms of shallow acceptors in germanium. In p-type germanium at low temperatures relaxation of the muon spin was observed, indicating that the muonic atom (gallium-like acceptor center) formed via capture of the negative muon by a host atom is in the paramagnetic state and its magnetic moment is relaxing. The relaxation rate of the muon spin was found to depend on temperature and on concentration of gallium impurity. We conclude that to the relaxation of the magnetic moment of the Ga acceptor in Ge there contribute both scattering of phonons and quadrupole interaction between the acceptors. We estimate, for the first time, the hyperfine interaction constant for the gallium acceptor in germanium as 0.11 MHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call