Abstract

We study the relaxation of perturbed low-angle tilt grain boundaries by climb of the constituent dislocations. Under the combined influence of the long-range effects due the Peach–Koehler force and vacancy diffusion, dislocation climb always stabilizes the grain boundaries on a time scale that is proportional to the square of the perturbation length scale and inversely proportional to the point defect diffusivity. This relaxation has a different nature from that of perturbed low-angle grain boundaries by dislocation glide, in which only the long-range Peach–Koehler force is important, leading to a perturbation relaxation time linearly proportional to the perturbation wavelength itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.