Abstract
We propose a relaxation framework for general fluid models which can be understood as a natural extension of the Suliciu approach in the Euler setting. In particular, the relaxation system may be totally degenerate. Several stability properties are proved. The relaxation procedure is shown to be efficient in the numerical approximation of the entropy weak solutions of the original PDEs. The numerical method is particularly simple in the case of a fully degenerate relaxation system for which the solution of the Riemann problem is explicit. Indeed, the Godunov solver for the homogeneous relaxation system results in an HLLC-type solver for the equilibrium model. Discrete entropy inequalities are established under a natural Gibbs principle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Models and Methods in Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.