Abstract

The solutions of hyperbolic systems may contain discontinuities. These weak solutions verify not only the original PDEs, but also an entropy inequality that acts as a selection criterion determining whether a discontinuity is physical or not. Obtaining a discrete version of these entropy inequalities when approximating the solutions numerically is crucial to avoid convergence to unphysical solutions or even unstability. However such a task is difficult in general, if not impossible for schemes of order 2 or more. In this paper, we introduce an optimization framework that enables us to quantify a posteriori the decrease or increase of entropy of a given scheme, locally in space and time. We use it to obtain maps of numerical diffusion and to prove that some schemes do not have a discrete entropy inequality. A special attention is devoted to the widely used second order MUSCL scheme for which almost no theoretical results are known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.