Abstract
Within the framework of Relativistic Schrodinger Theory (RST), the scalar two-particle systems with electromagnetic interactions are treated on the basis of a non-Abelian gauge group U(2) which is broken down to the Abelian subgroup U(1)×U(1). In order that the RST dynamics be consistent with the (non-Abelian) Maxwell equations, there arises a compatibility condition which yields cross relationships for the links between the field strengths and currents of both particles such that self-interactions are eliminated. In the non-relativistic limit, the RST dynamics becomes identical to the well-known Hartree–Fock equations (for spinless particles). Consequently the original RST field equations may be considered as the relativistic generalization of the Hartree–Fock equations, and the “exchange interactions” of the conventional theory (induced by the anti-symmetrization postulate) do reappear here as ordinary gauge interactions due to a broken symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.