Abstract

The general formalism of relativistic Schrodinger theory (RST) is specialized to a scalar two-particle system with electromagnetic interactions (scalar helium atom). The set of dynamically allowed field configurations splits up into positive and negative mixtures and pure states. The static and spherically symmetric solutions are constructed by means of first-order perturbation theory for the case of an attractive Coulomb potential. The corresponding energy levels for the positive and negative mixtures resemble the emergence of ortho and para states in the conventional quantum theory. The associated energy eigenvalues predicted by the RST seem to undergo a certain kind of mixture degeneracy as the RST analog of the conventional exchange degeneracy. The charge densities of the positive mixtures assimilate, whereas the densities of the negative mixtures recede from one another. Thus, positive (negative) mixtures strongly resemble the bosonic (fermionic) matter of the conventional theory when the Pauli principle is applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.