Abstract

The phenomenon of exchange degeneracy of 2-particle quantum states is studied in detail within the framework of Relativistic Schrodinger Theory (RST). In conventional quantum theory this kind of degeneracy refers to the circumstance that, under neglection of the interparticle interactions, symmetric and anti-symmetric 2-particle states have identical energy eigenvalues. However the analogous effect of RST degeneracy is rather related to the emergence of two types of mixtures (positive and negative) in connection with the vanishing or non-vanishing of certain components of the Hamiltonian (“exchange fields”). As a consequence, there arise two subcases of RST degeneracy: (i) mixture degeneracy through neglection of the exchange fields and (ii) exchange degeneracy through neglection of the mixture character of matter. The latter RST exchange degeneracy consists in the fact that the RST dynamics admits a certain set of pure-state solutions, as borderline case between positive and negative mixtures, and all these different solutions are generating the same physical situation, e.g., concerning mass eigenvalues and physical densities (of current and energy-momentum). The general results are exemplified by considering the 2-particle states for (scalar) Helium. Analogously as the conventional exchange degeneracy is broken (ortho- and para-Helium) by taking into account the interparticle interactions (e.g., Coulomb forces), the RST degeneracy is broken by simultaneously taking into account the mixture character of matter together with non-zero exchange fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.