Abstract
We formulate the effective Gross-Neveu-Yukawa theory of the semimetal-insulator transitions on the honeycomb lattice and compute its quantum critical behavior near three (spatial) dimensions. We find that at the critical point Dirac fermions do not survive as coherent excitations and that the $\ensuremath{\sim}1/r$ tail of the weak Coulomb interaction is an irrelevant coupling. The emergent Lorentz invariance near criticality implies a universal ratio of the low-temperature specific heats of the metallic and the rotational-symmetry-broken insulating phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.