Abstract

Relativistic many-body perturbation theory calculations on Xe have been performed with basis sets of well-tempered Gaussian-type functions of Huzinaga and Klobukowski. The well-tempered Gaussian-type functions were used in both contracted and uncontracted form. The contracted Gaussian basis sets used in the relativistic many-body study are designed to retain flexibility for correlated calculations both in the core and the valence region. They reproduce second-order energy corrections computed with uncontracted Gaussian basis sets to an accuracy of greater than 99%. A compact representation of the relativistic wave functions in terms of contracted well-tempered Gaussian functions used in the present study provides a useful means of curtailing integral storage requirements and the time needed for correlated calculations, while still retaining high accuracy in relativistic electron correlation effects. Keywords: Dirac–Fock, relativistic many-body perturbation theory, well-tempered Gaussian basis, xenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call