Abstract

A relativistic multimode Jahn−Teller effect for tetrahedral molecular complexes in a triplet electronic state is considered. The analysis is based on the symmetry properties of the electronic Hamiltonian and its generalized symmetry operators, acting on both the coordinates (spatial operations) and spins (matrix operations) of the electrons. As a result, a 9 × 9 vibronic matrix that includes the vibronic coupling constants of orbital and spin-orbital nature and depends on the five normal modes of t2 and e symmetry has been obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.