Abstract

It is well known that nitroguanidine (NQ) undergoes photodegradation when exposed to UV-radiation. However, the mechanism of NQ photolysis is not fully understood. Earlier investigations have shown that nitrocompounds undergo to their triplet state population through crossing of electronic singlet and triplet excited state potential energy surfaces due to the nitrogroup rotation and nonplanarity under electronic excitation. Therefore, it is expected that under electronic excitation, the presence of nitrogroup in NQ would also lead to the population of electronic lowest energy triplet state. To shed a light on the degradation of NQ in alkaline solution under electronic excitation, we performed a detailed investigation of a possible degradation mechanism at the IEFPCM/B3LYP/6-311++G(d,p) level in the electronic lowest energy triplet state. We found that degradation ability of NQ in the electronic triplet state would be significantly larger than in the electronic ground singlet state. It was revealed that the photodecomposition of nitroguanidine might occur through several pathways involving N-N and C-N bond ruptures, nitrite elimination, and hydroxide ionattachment. Nitrogen of nitrogroup would be released in the form of nitrite and nitrogen (I) oxide. Computationally predicted intermediates and products of nitroguanidine photolysis such as nitrite, hydroxyguanidine, cyanamide, and urea correspond to experimentally observed species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.