Abstract

Accurate functions to analytically represent the potential energy interactions of CO diatomic system in , , and electronic states are proposed. The new functions depend upon only four parameters directly obtained from experimental data, without any fitting procedure. These functions have been developed from the modified generalized potential proposed by Araújo and Ballester. The function for the electronic state represents a significant improvement to the previously proposed model. To quantify the accuracy of the potential energy functions, the Lippincont test is used. The novel potential was also compared with the classical Morse potential and with the recently proposed Improved Generalized Pöschl-Teller potential. Furthermore, the main spectroscopic constants and vibrational energy levels are calculated and compared for all potentials. The present results agree excellently with the experiment Rydberg-Klein-Rees (RKR) potentials. The rovibrational energy levels of the proposed diatomic potentials were asserted by solving radial the Schrödinger equation of the nuclear motion with the aid of the LEVEL program.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.