Abstract

Gaussian basis sets for use in relativistic molecular calculations are developed for atoms and ions with one to ten electrons. A relativistic radial wavefunction coupled to an angular function of l-symmetry is expanded into a linear combination of spherical Gaussians of the form r l exp (−αr 2). One set of basis functions is used for all large and small components of the same angular symmetry. The expansion coefficients and the orbital exponents have been determined by minimizing the integral over the weighted square of the deviation between the Dirac or Dirac-Fock radial wavefunctions and their analytical approximations. The basis sets calculated with a weighting function inversely proportional to the radial distance are found to have numerical constants very similar to those of their energy-optimized non-relativistic counterparts. Atomic sets are formed by combining l-subsets. The results of relativistic and non-relativistic calculations based on these sets are analyzed with respect to different criteria, e.g. their ability to reproduce the relativistic total energy contribution and the spin-orbit splitting. Contraction schemes are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.