Abstract
In a previous paper we have shown it is possible to build alternative versions of Special Theory of Relativity only considering homogeneity of space, of time and Relative Principle without invoking the postulate of invariance of light velocity in all the inertial frames. Within these alternatives, space and time transformations different than the Lorentz ones like, in particular, the Selleri inertial transformations, are possible. This has many important consequences as, for example, the need for the distinction between physical time as duration of change in space and mathematical time as a parameter quantifying this change as well as the anisotropy of one-way velocity of light. These results require a reformulation and a new understanding of relativistic energy and mass. In this paper we'll firstly show that, using only classical laws of Newtonian mechanics, classical electrodynamics and fundamental physical principles of homogeneity of space and time without referring to Theory of Relativity at all, it is possible to derive the correct form of fundamental equation E。= mc2, the relativistic energy and momentum of a free particle in a preferred inertial frame. This makes relativistic energy and mass to assume a realistic physical meaning and an unambiguous definition only when referred to this preferred inertial frame identified by inertial transformations. This special universal meaning of energy, not recognized by standard Theory of Relativity, in which relativistic energy can assume different and independent values in all the possible infinite inertial frames, appears to be related to the fundamental invariance properties of space itself on which inertial transformations are based. In order to explain the origin of relativistic energy and mass, a novel physical model, also coherent with experimental results, has been then proposed. According to our model, mass could be considered as a conventional view of more fundamental properties of space emerging from a quantum vacuum, ruled by the Planck metric, in which the most fundamental physical entity is represented by energy density. In this picture relativistic mass and energy are coherently expressed as a measure of the diminished energy density of quantum vacuum.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have