Abstract

Understanding why there is extensive variation in sperm form and function across taxa has been a challenge because sperm are specialized cells operating at a microscopic level in a complex environment. This comparative study collates published data to determine whether the evolution of sperm morphometry (sperm total length and separate component dimensions) is associated with sperm competition (when different males' sperm mix and compete for a female's ova) across 83 mammalian species. We use relative testes mass as an indicator of the intensity of sperm competition across taxa: relative investment into testes is widely accepted to predict the level of sperm competition that a species or population endures. Although we found evidence for positive associations between relative testes mass (controlling for allometry) and sperm morphometry across 83 mammalian species, these relationships were phylogenetically dependent. When we appropriately controlled for phylogenetic association using multiple regression within a phylogenetic framework, there was no relationship between relative testes mass and sperm length across mammals. Furthermore, we found no evidence for associations between relative testes mass and sperm head, mid-piece or flagellar lengths, nor was there a relationship with mid-piece or mitochondrial volumes. Results, therefore, indicate that sperm competition does not select for longer or shorter sperm across mammals, and alternative forces selecting on sperm form and function are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call