Abstract

SUMMARYWe introduce a new relative moment tensor (MT) inversion method for clusters of nearby earthquakes. The method extends previous work by introducing constraints from S-waves that do not require modal decomposition and by employing principal component analysis to produce robust estimates of excitation. At each receiver, P and S waves from each event are independently aligned and decomposed into principal components. P-wave constraints on MTs are obtained from a ratio of coefficients corresponding to the first principal component, equivalent to a relative amplitude. For S waves we produce constraints on MTs involving three events, where one event is described as a linear combination of the other two, and coefficients are derived from the first two principal components. Nonlinear optimization is applied to efficiently find best-fitting tensile-earthquake and double-couple solutions for relative MT systems. Using synthetic data, we demonstrate the effectiveness of the P and S constraints both individually and in combination. We then apply the relative MT inversion to a set of 16 earthquakes from southern Alaska, at ∼125 km depth within the subducted Yakutat terrane. Most events are compatible with a stress tensor dominated by downdip tension, however, we observe several pairs of earthquakes with nearly antiparallel slip implying that the stress regime is heterogeneous and/or faults are extremely weak. The location of these events near the abrupt downdip termination of seismicity and the low-velocity zone suggest that they are caused by weakening via grain-size and volume reduction associated with eclogitization of the lower crustal gabbro layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.