Abstract

Simple SummaryOne of the main characteristics of the periparturient period is the mobilization of adipose and muscle reserves to support the metabolic demands of fetal growth and lactation. A comparison of cattle with low vs. high longissimus dorsi thickness in late gestation demonstrated that high-muscle cows gained additional backfat, whereas cattle with less muscle thickness gained additional muscle, from approximately one month prior to calving through calving. High-muscle cows subsequently mobilized more muscle and fat than low-muscle cows and yielded less milk through 60 days in milk. Thereby, the relative amount of muscle mass in late gestation may be related to metabolic strategies that support the fetus and milk production during the periparturient period.Due to insufficient dry matter intake and heightened nutrient requirements in early lactation, periparturient dairy cows mobilize adipose and muscle tissues to bridge energy and amino acid gaps, respectively. Our objective was to evaluate the relationship between the relative muscle thickness of late pregnant cows and their early lactation performance. At 35 d before expected calving (BEC), longissimus dorsi muscle thickness (LDT) was measured in forty-one multiparous Holstein cows via ultrasound. Tissue mobilization was evaluated via ultrasound images of LDT and backfat thickness (BFT) at 21 and 7 d BEC as well as at 0, 10, 30, and 60 DIM. Plasma concentrations of 3-methylhistidine (3-MH), creatinine (CRE), non-esterified fatty acids (NEFA), and β-hydroxybutyrate (BHB) were evaluated weekly. Milk yield and milk component data were collected through 60 DIM. Cattle were assigned post hoc to high-muscle (HM; n = 20; LDT > 4.49 cm) or low-muscle (LM; n = 21; ≤4.37 cm) groups, with mean LDT at 35 d BEC greater in HM (5.05 ± 0.49) than in LM (3.52 ± 0.65) animals. Between 35 and 21 d BEC, LM cows gained LDT, whereas HM cows gained BFT. HM cows mobilized more muscle from 21 d BEC to 30 DIM, as reflected by a greater loss of LDT, greater 3-MH concentrations (532 vs. 438 ± 30 ng/mL), and a greater 3-MH:CRE ratio (0.164 vs. 0.131 ± 0.008) in the first three weeks postpartum. The LDT and BFT at 21 d BEC were related to the amount of respective tissue mobilized through 30 DIM (R2 = 0.37 and 0.88, respectively). Although calves born to HM cattle were larger (45.2 vs. 41.8 ± 0.7 kg), HM cows produced less milk (38.8 vs. 41.6 ± 0.8 kg/d) with a tendency towards higher fat content (4.33 vs. 4.05 ± 0.12%), likely related to the mobilization of more backfat from 0 to 60 DIM (1.78 vs. 0.68 ± 0.34 mm), compared to LM cattle. These findings suggest that a cow’s metabolic status, as measured by LDT and BFT prepartum, may influence the metabolic strategy the animal uses to meet energy and amino acid requirements in late gestation and early lactation.

Highlights

  • In dairy cattle, physiological adaptations from gestation to lactation are marked by coordinated changes in metabolism, partitioning nutrients in order to support the developing fetus and the subsequent demands of milk synthesis [1]

  • There were no differences in daily dry matter intake (DMI) between the LM and HM groups (Figure S1)

  • Calving, there was no change in muscle thickness in HM cows, whereas the LM group exhibited a significant gain in muscle thickness between 35 d and 21 d before expected calving (BEC) (Figure 1)

Read more

Summary

Introduction

Physiological adaptations from gestation to lactation are marked by coordinated changes in metabolism, partitioning nutrients in order to support the developing fetus and the subsequent demands of milk synthesis [1]. Energy and amino acid (AA) gaps result from elevated nutrient requirements coupled with the cow’s inability to consume adequate dry matter. To overcome this deficit, cattle mobilize adipose and muscle tissue reserves to meet glucose and AA requirements in fetal growth, mammogenesis, and lactation. Excessive tissue mobilization contributes to metabolic disease development during the periparturient period, which impacts the welfare of cattle and economic returns to the producer [11]. An improved understanding of the metabolic changes that occur over the periparturient period and the environmental stressors that affect these changes can aid in the development of management strategies that mitigate excessive tissue mobilization [12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call