Abstract

Competition between presynaptic inputs has been suggested to shape dendritic form. This hypothesis can be directly tested on bitufted, auditory neurons in chicken nucleus laminaris (NL). Each NL neuron contains two relatively symmetrical dendritic arbors; the dorsal dendrites receive excitatory glutamatergic input from the ipsilateral ear, and the ventral dendrites receive corresponding input from the contralateral ear. To assess the effect of relative synaptic strength on NL dendrites, we used single-cell electroporation; electrophysiology; and live, two-photon laser scanning microscopy to manipulate both the amount and the balance of synaptic input to the two matching sets of dendrites. With simultaneous activation, both sets of dendrites changed together, either growing or retracting over the imaging period. In contrast, stimulation of only one set of dendrites (either dorsal or ventral) resulted in the unstimulated dendrites losing total dendritic branch length, whereas the stimulated dendrites exhibited a tendency to grow. In this system, balanced input leads to balanced changes in the two sets of dendrites, but imbalanced input results in differential changes. Time-lapse imaging revealed that NL dendrites respond to differential stimulation by first decreasing the size of their unstimulated dendrites and then increasing the size of their stimulated dendrites. This result suggests that the relative activity of presynaptic neurons dynamically controls dendritic structure in NL and that dendritic real estate can rapidly be shifted from inactive inputs to active inputs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call