Abstract

In coastal areas, geological heterogeneity influences the geometry and characteristics of the freshwater-saltwater mixing zone. Geophysical electrical and electromagnetic methods are increasingly used to delineate the freshwater-saltwater mixing zone or for groundwater model calibration. However, in practical applications, it is common when assessing pore water salinity from resistivity models to disregard the spatial variability of the aquifer properties assuming pore salinity is the dominant control on bulk electrical conductivity. In this paper we use a coupled hydrogeophysical model to assess the discrepancies in recovered salinity caused by the geophysical inversion and the application of the chosen petrophysical model when heterogeneity is ignored. We find that errors made when neglecting heterogeneity during petrophysical transformation are equivalent or higher in magnitude than inversion errors, more so when an inappropriate petrophysical model is used, but exhibit different spatial distribution. The results show that their combined effect results in significant overestimation of the spreading of the mixing zone. The analysis provides new insights to the groundwater community to better evaluate the reliability of geophysically-derived information when delineating the freshwater-saltwater interface or when geophysics is used quantitatively as part of model scenario simulation, uncertainty analysis or optimisation strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.