Abstract
Abstract. During Marine Isotope Stage (MIS)-13, an interglacial about 500 000 years ago, the East Asian summer monsoon (EASM) was suggested exceptionally strong by different proxies in China. However, MIS-13 is a weak interglacial in marine oxygen isotope records and has relatively low CO2 and CH4 concentrations compared to other interglacials of the last 800 000 years. In the meantime, the sea surface temperature (SST) reconstructions have shown that the warm pool was relatively warm during MIS-13. Based on climate modeling experiments, this study aims at investigating whether a warmer Indo-Pacific warm pool (IPWP) can explain the exceptionally strong EASM occurring during the relatively cool interglacial MIS-13. The relative contributions of insolation and of the IPWP SST as well as their synergism are quantified through experiments with the Hadley Centre atmosphere model, HadAM3, and using the factor separation technique. The SST of the IPWP has been increased based on geological reconstructions. Our results show that the pure impact of a strong summer insolation contributes to strengthen significantly the summer precipitation in northern China but only little in southern China. The pure impact of enhanced IPWP SST reduces, slightly, the summer precipitation in both northern and southern China. However, the synergism between insolation and enhanced IPWP SST contributes to a large increase of summer precipitation in southern China but to a slight decrease in northern China. Therefore, the ultimate role of enhanced IPWP SST is to reinforce the impact of insolation in southern China but reduce its impact in northern China. We conclude that a warmer IPWP helps to explain the strong MIS-13 EASM precipitation in southern China as recorded in proxy data, but another explanation is needed for northern China.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.