Abstract

Exploring biochar from gas-pressurized torrefaction for solid biofuel production is of great concern for the process performance assessment. This study conducts several relative indexes of biochars produced from gas-pressurized and conventional torrefaction, identifying the merits of the former. The results suggest that a higher pressure is more feasible for reducing biochar volume and enhancing energy efficiency. The results of the relative higher heating value (1.01–1.07) and relative enhancement factor (1.00–1.06) indicate that gas-pressurized torrefaction is more efficient for energy density improvement. Furthermore, gas-pressurized torrefaction dramatically facilitates biochar grindability, with the relative Hardgrove grindability index value ranging from 1.20 to 2.40. The proximate and elemental analysis results suggest that a higher pressure facilitates biochar carbonization and deoxygenation with a higher carbonized component. The energy consumption, efficiency, and expense calculation results imply that gas-pressurized torrefaction is more energy-efficient and cost-saving, with the relative upgrading energy index range of 1.00–1.12.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.