Abstract
Motion of a dynamically symmetric CubeSat nanosatellite around the mass center on the circular orbit under the action of aerodynamic and gravitational torques is considered. We determined the nanosatellite equilibrium positions in the flight path axis system. We took into account the fact that the CubeSat nanosatellite has a rectangular parallelepiped shape and, therefore, the aerodynamic drag force coefficient depends on the angles of attack and proper rotation. We obtained formulae which allow calculating the values of the angles of attack, precession and proper rotation that correspond to the equilibrium positions, depending on the mass-inertia and geometric parameters of the nanosatellite, the orbit altitude, and the atmospheric density. It is shown that if the gravitational moment predominates over the aerodynamic one, there are 16 equilibrium positions, if the aerodynamic moment predominates over the gravitational one, there are 8 equilibrium positions, and in the case when both moments have comparable values there are 8, 12 or 16 equilibrium positions. Using the formulae obtained, we determined the equilibrium positions of the SamSat-QB50 nanosatellite. We calculated the ranges of altitudes where SamSat-QB50 nanosatellite has 8, 12, or 16 relative equilibrium positions.
Highlights
Обеспечение заданной ориентации наноспутников в пространстве является важным вопросом, так как от этого зависит выполнение многих целевых задач полёта
We obtained formulae which allow calculating the values of the angles of attack, precession and proper rotation that correspond to the equilibrium positions, depending on the mass-inertia and geometric parameters of the nanosatellite, the orbit altitude, and the atmospheric density
CubeSat nanosatellite; angular equilibrium positions; aerodynamic moment; gravitational torque; angle of attack; angle of precession; angle of proper rotation
Summary
xb12 yb22 zb32 0. Определим положения равновесия для динамически симметричного наноспутника формата CubeSat со смещением центра масс от геометрического центра по трём координатам ( A B C и x 0, y 0, z 0). В этом случае система (6) примет вид:
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: VESTNIK of Samara University. Aerospace and Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.