Abstract
Insulin resistance is closely related to intramyocellular lipid (IMCL) accumulation, and both are associated with increasing age. It remains to be determined to what extent perturbations in IMCL metabolism are related to the aging process per se. On two separate occasions, whole-body and muscle insulin sensitivity (euglycemic-hyperinsulinemic clamp with 2-deoxyglucose) and fat utilization during 1 h of exercise at 50% VO2max ([U-(13)C]palmitate infusion combined with electron microscopy of IMCL) were determined in young lean (YL), old lean (OL), and old overweight (OO) males. OL displayed IMCL content and insulin sensitivity comparable with those in YL, whereas OO were markedly insulin resistant and had more than twofold greater IMCL in the subsarcolemmal (SSL) region. Indeed, whereas the plasma free fatty acid Ra and Rd were twice those of YL in both OL and OO, SSL area only increased during exercise in OO. Thus, skeletal muscle insulin resistance and lipid accumulation often observed in older individuals are likely due to lifestyle factors rather than inherent aging of skeletal muscle as usually reported. However, age per se appears to cause exacerbated adipose tissue lipolysis, suggesting that strategies to reduce muscle lipid delivery and improve adipose tissue function may be warranted in older overweight individuals.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have