Abstract

This study was conducted to evaluate the relative biological value (RBV) of 1α-hydroxycholecalciferol (1α-OH-D3) to 25-hydroxycholecalciferol (25-OH-D3) in one- to 21-day-old broiler chickens fed calcium (Ca)- and phosphorus (P)-deficient diets. On the d of hatch, 450 male Ross 308 broiler chickens were weighed and randomly allotted to 9 treatments with 5 replicates of 10 birds per replicate. The basal diet contained 0.50% Ca and 0.25% non-phytate phosphorus (NPP) but was not supplemented with cholecalciferol (vitamin D3). The levels of Ca and NPP in basal diets were lower than those recommended by NRC (1994). 25-OH-D3 was fed at zero, 1.25, 2.5, 5.0, and 10.0 μg/kg, and 1α-OH-D3 was fed at 0.625, 1.25, 2.5, and 5.0 μg/kg. The RBV of 1α-OH-D3 to 25-OH-D3 based on vitamin D intake was determined by the slope ratio method. Results showed that 25-OH-D3 or 1α-OH-D3 improved the growth performance and decreased the mortality in one- to 21-day-old broilers. A linear relationship was observed between the level of 25-OH-D3 or 1α-OH-D3 and mineralization of the femur, tibia, or metatarsus. The RBV of 1α-OH-D3 to 25-OH-D3 were 234, 253, and 202% when the weight, ash weight, and Ca percentage of femur were used as criteria. The corresponding RBV of 1α-OH-D3 to 25-OH-D3 were 232 to 263% and 245 to 267%, respectively, when tibia and metatarsus mineralization were used as criteria. These data indicate that when directly feeding a hormonally active form of vitamin D as 1α-OH-D3 proportionally less is needed than when using the precursor (25-OH-D3) in diets deficient in Ca and P.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call